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METHOD OF SIEVES

Grenander’s method of sieves is a general
technique through which parametric ap-
proaches to estimation can be applied to
nonparametric problems. Typically, classical
approaches such as maximum likelihood*
and least squares* fail to produce consistent
estimators when applied to nonparametric
(infinite dimensional) problems. Thus, for
example, the unconstrained maximum likeli-
hood estimator for a density function is not
consistent (not even well defined) in the
nonparametric case (see Examples 1 and 2
below), and direct application of least
squares similarly fails for the nonparametric
estimation of a regression function (see Ex-
amples 3 and 4 below). Speaking loosely, it
might be said that in each case the parame-
ter space (a space of functions) is too large.

KOTZ-JOHNSON: ENCYCL T
IGHT (C) 1985 BY JOHN WILEY & SONS, INC.

OPEDIA OF STATISTICAL a@iEr 38,

METHOD OF SIEVES 473

Grenander [11] suggests the following rem-
edy: perform the optimization* (maximiza-
tion of the likelihood, minimization of the
sum of squared errors, etc.) within a subset
of the parameter space, choosing increas-
ingly dense subsets with increasing sample
sizes. He calls this sequence of subsets from
which the estimator is drawn a sieve, and the
resulting estimation procedure is his method
of sieves. It leads to consistent nonparamet-
ric estimators, with different sieves giving
rise to different estimators.

The details and versatility of the method
are best illustrated by examples; other appli-
cations can be found in Grenander [11],
wherein the method was first introduced,
and in some of the other references.

Example 1. Histogram. Let x,, ..., x, be
an independent and identically distributed
(i.i.d.) sample from an absolutely continuous
distribution with unknown probability den-
sity function (p.d.f.) ag(x). The maximum
likelihood estimator for «, maximizes the
likelihood function

n

Hl a(x;)- (1
But the maximum of (1) is not achieved
within any of the natural parameter spaces
for the nonparametric problem (e.g., the col-
lection of all nonnegative functions with
area 1). Thus unmodified maximum likeli-
hood is not consistent for nonparametric
density estimation.

A sieve is a sequence of subsets of the pa-
rameter space indexed by sample size. For
each A > 0 let us define

Sy = {a : a is a p.d.f. which is constant on

i‘—_l IS =0, +1,+2
[ )\ ’A)’k 0’—,—,"' r
and allow A = A, to grow with sample size.
{8} constitutes a sieve, and the associated
(maximum likelihood) method of sieves esti-
mator solves the problem:
n
maximize [ a(x;)
i=1

subjectto a €S, .
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The well-known solution is the function

a‘(x)=%#[x,-:k)\_1 <x,-<}\£}

n n

f

or xef(k=1 }\ '\ k),
le., the histogram* with bin width A~'. If
A oo sufficiently slowly, then & is consis-
tent, e.g., in the sense that [|@(x) — ay(x)|dx
—0 as.

Example 2. Convolution Sieve for Nonpara-
metric Density Estimation*. For the same

problem, a different and more interesting
sieve is the convolution sieve:

Sy, = {a:a(x)=

f_exp[

F an arbitrary c.d.f. } ;

2

b x-y) }F(dy),

where A, is a nonnegative sequence increas-
ing to infinity. The method of sieves estima-
tor @& maximizes (1) within the sieve S, . It
can be shown [10] that & has the form

2

2 Pi—— L) 5 (x _)’i)Z}

2P 5, e"p[

for some y;,...,y, and p, ..., p, satisty-
ingp, >0,1<i<n 3 p=11Itcan also
be shown that {y,,...,y,} # {x;,..., x,}
(with probability 1). Thus the convolution
sieve defines an estimator closely related to,
but distinct from, the Parzen-Rosenblatt
Gaussian kernel estimator. Observe that the
latter is in the sieve S, : take F to be the
empirical distribution function. But the max-
imum of the likelihood is achieved by using
a different distribution. As with the Parzen-
Rosenblatt estimator, if A, 1o sufficiently
slowly (i.e., the “window width” is decreased
sufficiently slowly), then the estimator is
consistent. For details see Geman and
Hwang [9], and for an interesting discussion
of this and related estimators from a differ-
ent point of view, see Blum and Walter [2].

a(x) =

Example 3. Splines* for Nonparametric Re-
gression. Let X and Y be random variables
and let (xy, y),...,(x,,y,) be an iid.
sample from the bivariate distribution of
(X,Y). The least squares estimator of the
regression function E(Y | X = x) minimizes

3 (= a(w)? @

Observe that the minimum is zero and is
achieved by any function that passes
through all of the points of observation,
(x1, Y1) . ., (x%,, y,).- Excepting some very
special cases, this set does not in any useful
sense converge to the true regression.

For any nonnegative sequence A,Tco de-
fine a sieve {S) } as follows:

Sy, = {a : a absolutely continuous,

d 2
f’ Ea(x)‘ dx < }\,,].

The least squares method of sieves estimator,
&, for the regression function is the function
in S, minimizing (2). The unique minimum
is a first-degree polynomial smoothing
spline, i.e., & is continuous and piecewise
linear with discontinuities in dd /dx at
X(s..., X, (see ref. 15). It is possible to
show that if A, increases sufficiently slowly,
then the estimator is strongly consistent for
E(Y|X = x) in a suitable metric (details are
in ref, 8).

Example 4. Dirichlet Kernel for Nonparamet-
ric Regression. Recall the nonparametric
regression problem discussed in the previous
example. Let us here take x, the “inde-
pendent” variable, to be deterministic. We
then think of the distribution of Y as being
an unknown function of x, F, (). For this
example, we assume x € [0, 1]. The problem
is then to estimate

ao(x) = E,[ Y] Ef_oowny(dy), x €]0,1],

from independent observations y,, ..., y,,
where y,~F, , and x,, . . ., x, is a determin-
istic, so-called design, sequence. For exam-
ple, assume that the design sequence for
fixed n is equally spaced on the interval [0, 1]



with

i B
X ==, i=12,...,n
n

As with the previous example, unconstrained
minimization of the sum of squares of errors,
(2), does not produce a useful estimator.
Introduce the Fourier sieve

m

S, = [a(x) ra(x)y= > @™ }
k=—m
S, is particularly tractable and makes for a
good illustration of the method in this set-
ting. The sieve size is governed by the pa-
rameter m, which is allowed to increase to
infinity with n. If we restrict m, so that
m, < n for all n, then & is uniquely defined
by requiring that it minimize (2) subject to
a €S, . A simple calculation gives the ex-
plicit form:

. 1< y
a(x)= " 21 YiD,, (x — x;)
=

where D,, is the Dirichlet kernel

sinm(2m + 1)x
Dy (%)= sinx )
Kernel estimators for nonparametric regres-
sion have been widely studied, although
from a somewhat different point of view. See
refs. 1, 4, 6, 16, and 17 for some recent
examples. It is not difficult to exploit this
simple form for 4. Depending on the rate at
which m, 1o, and depending on assump-
tions about a,, consistency, rates of conver-
gence, and asymptotic distribution can be
established ([8].

What makes this example particularly
tractable is that the estimator is based on a
sieve that consists of increasing subspaces of
a Hilbert space. Nguyen and Pham [14] used
sieves of this type to estimate the drift func-
tion of a repeatedly observed nonstationary
diffusion.

Example 5. Nonparametric Estimation of the
Drift Function of a Diffusion. From an ob-
servation of a sample path of a diffusion
process* one can construct consistent esti-
mators for the diffusion drift. If the form of
the drift function is known up to a finite
collection of parameters, then it is possible

METHOD OF SIEVES 475

to use maximum likelihood and obtain con-
sistent and asymptotically normal estimators
(see Brown and Hewitt [3], Feigin [5], Lee
and Kozin [12], and Lipster and Shiryayev
[13]). But unconstrained maximum likeli-
hood fails in the nonparametric case.

More precisely, let us consider a diffusion
process x, defined by

dx, = ag(x,)dt + odw,, Xo = Xg»

with w, a standard (one-dimensional) Brown-
ian motion* and x, a constant. o, and o are
assumed to be unknown; we wish to esti-
mate «, from an observation of a sample
path of x,. It is well known that the distribu-
tion of x,, s € [0,7], is absolutely continuous
with respect to the distribution of ow,, s
€[0, 7] (assuming some mild regularity con-
dition on ap). A likelihood function for the
process x,, s €[0,/] is the Radon-Nikodym
derivative:

exp[fotao(xs) dx, — %fotao(xsf ds}. 3)

The maximum likelihood estimator for a,
maximizes (3) over a suitable parameter
space, most appropriately the space of uni-
formly Lipschitz continuous functions. But
the maximum of the likelihood is not at-
tained, either in this or in any other of the
usual function spaces. In a manner analo-
gous to the previous examples, a sieve S, can
be introduced (here indexed by time) and an
estimator & defined to maximize (3) subject
to a € §,. Provided that the sieve growth is
sufficiently slow with respect to ¢, this
method of sieves estimator can be shown to
be consistent: & > ag, in a suitable norm, as
t — 0. Details are in Geman [7].
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This concept was introduced by Zolotarev
[1], who discussed applications to mathemat-

ical statistics in some detail [2], and later
presented further developments [3]. The no-
tion is useful in problems of approximating
distributions of random variables obtained
from independent random variables by suc-
cessive application of addition, multiplica-
tion, taking maxima, or some other “group
operations.”
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(APPROXIMATIONS TO DISTRIBUTIONS)

METRIKA

The journal Metrika bears the subtitle Inter-
national Journal for Theoretical and Applied
Statistics. 1t appears quarterly, starting with
volume 1 in 1958. In the course of time the
number of pages has increased up to nearly
300 per volume (=4 fasc.). There are no
auxiliary publications.

Research papers and, very rarely, survey
papers are published. As expressed in the
title, published articles belong to the field of
mathematical statistics (see Fig. 1). During
the starting years this concept was under-
stood in a wider sense, but now, because of
the large number of submitted manuscripts,
only articles on statistics in a narrower sense
are accepted, i.e., only those on statistical
methods and mathematical statistics. Great
importance is attached to applicability of
proposed and investigated methods.

Articles written in German or in English
are acceptable. Far more than half the pa-
pers are submitted in English. Besides the
actual articles each volume also contains
book reviews. Whereas formerly there was a
large number of brief reviews, future issues
will review fewer books in greater detail.



